

Cambridge O Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

681198949

COMBINED SCIENCE

5129/21

Paper 2 Theory

October/November 2023

1 hour 45 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

This document has 20 pages. Any blank pages are indicated.

DC (CJ/CGW) 319371/3 © UCLES 2023

[Turn over

1 Fig. 1.1 is the speed–time graph for a ball falling from the top of a tower.

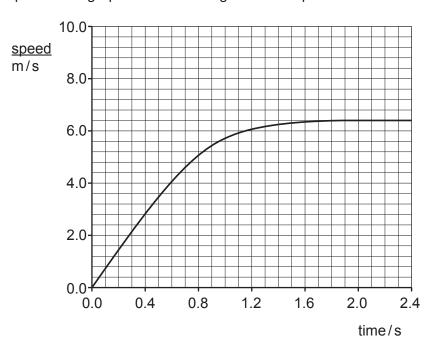


Fig. 1.1

- (a) On Fig. 1.1, use:
 - (i) the letter A to label part of the graph that shows constant non-zero acceleration [1]
 - (ii) the letter **B** to label part of the graph that shows changing acceleration. [1]
- (b) Calculate the distance travelled by the ball between 2.0 s and 2.4 s.

distance = m [2]

[Total: 4]

2 The boxes on the left contain specialised cells and tissues found in plants.

The boxes on the right contain functions of plant cells and tissues.

Draw **one** straight line from each structure to its function.

Each function can be used once, more than once or not at all.

structure	function
guard cells	
	transports sucrose
palisade mesophyll	
	controls size of stomata
phloem	
	produces glucose
root hair cell	
	transports mineral ions
spongy mesophyll	
	absorbs water
xylem	

[6]

3 Ammonia, NH₃, is produced by the reaction between nitrogen and hydrogen.

The equation for the reaction is:

$$\mathrm{N_2} \ + \ \mathrm{3H_2} \ \rightarrow \ \mathrm{2NH_3}$$

[A_r: H, 1; N, 14]

(a) (i) Calculate the relative molecular mass $M_{\rm r}$ of ammonia.

M,	=	 [1]	1
r			

(ii) Complete the following sentences.

51 g of ammonia is produced from g of nitrogen.

34 g of ammonia is produced from g of hydrogen.

[2]

(b) (i) Complete Fig. 3.1 to show the outer electrons in a molecule of ammonia.

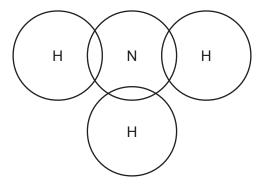


Fig. 3.1

[1]

(ii) Explain why ammonia has a low boiling point.

 	 	 	[1]

[Total: 5]

4 A wooden block of mass 1.6 kg is attached by a length of string to a weight as shown in Fig. 4.1.

When the block is released, there is a resultant force of 8.0 N to the right in the string.

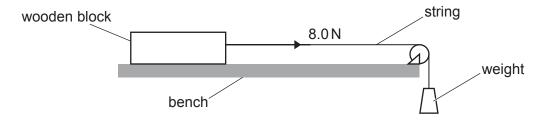


Fig. 4.1

(a) Calculate the acceleration of the block when it is released. State the unit of your answer.

acceleration =		unit	[3]
----------------	--	------	-----

(b) There is a frictional force of 2.0 N to the left acting against the block as it moves.

The block moves 0.75 m along the bench.

Calculate the work done against this frictional force.

[Total: 5]

5 (a) Use words from the list to complete the sentences about the circulatory system.

brain

Each word may be used once, more than once or not at all.

arteries

	thick	thin	valves	veins	villi	
Blood is p	umped round	d the body b	y the			
·	•	•	•			
These ves	sels have		walls	s to withstand	the high pressu	re of the blood.
		•	pressure, the	vessels cont	ain	to
prevent bl	ood flowing b	oackwards.				[4]

capillaries

heart

(b) Fig. 5.1 is an electron micrograph of a pathogen being engulfed by a blood cell.

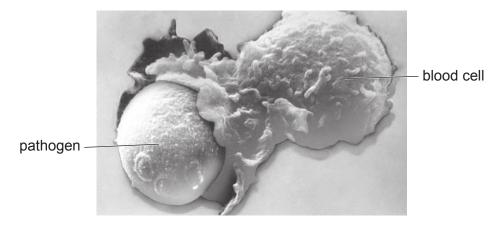


Fig. 5.1

(i)	Name the type of blood cell shown in Fig. 5.1.	
		[1]
(ii)	Name one other type of blood cell.	
		[1]
	[Tota	l: 6]

					1	
6	Soc	lium,	Na, re	acts with bromine, B	r ₂ , to form sodium bromide, NaBr.	
	(a)	(i)	Const	ruct a balanced sym	bol equation for the reaction.	
						[1]
		(ii)	State	the type of bonding i	in sodium bromide.	
						[1]
	(b)			shows some observant chemicals, X , Y a	ations when aqueous solutions of sodium and ${f Z}$.	bromide are mixed
					Table 6.1	
				chemical	observation	
				Х	orange solution formed	
				Y	no change	
				Z	cream precipitate formed	
		(i)	Sugge	est the name of a hal	logen that is chemical X .	
						[1]
	(ii) Suggest the name of a halogen that is chemical Y.					
						[1]
		(iii)	Sugge	est the name of a co	mpound that is chemical Z .	
						[1]

[Total: 5]

7 (a) A weight of 12.0 N is placed at the end of a beam as shown in Fig. 7.1.

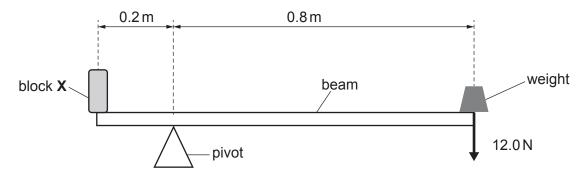


Fig. 7.1

Calculate the mass in kg of block \boldsymbol{X} that balances the beam.

Assume that the beam has negligible mass.

Gravitational field strength $g = 10 \,\text{N/kg}$.

		mass = kg	[3]
(b)	The	block absorbs infrared radiation.	
	This	s causes its temperature to rise.	
	(i)	State the name of one renewable source of energy that gives out infrared radiation.	
			[1]
	(ii)	The block is then wrapped in thermal insulation and placed in a cold room.	
		State and explain what happens to the temperature of the block.	
			[2]

[Total: 6]

Question 8 begins over the page

8 (a) During exercise, the heart rate increase.	eases
--	-------

State two reasons why there is an increase in heart rate during exercise.
reason 1

reason 2	 	
		[2]

(b) Fig. 8.1 shows the heart rate of a student over a period of twenty minutes before and after three weeks of training.

The period includes:

- five minutes of resting
- ten minutes of running quickly
- · five minutes of resting after running.

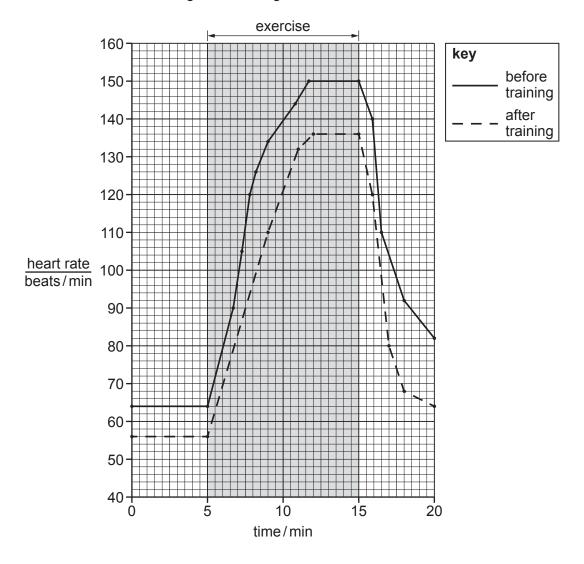


Fig. 8.1

(i)	State the maximum heart rate of the student before training for three week	ks.
	maximum heart rate =	. beats/min [1]
(ii)	Describe two effects, shown in Fig. 8.1, of the training on the heart rate of	
	2	
		[2]
		[Total: 5]
During a	n earthquake, two types of seismic wave are transmitted through the Eart	h.
State the	e names of these two types of seismic wave.	
Describe energy.	e the difference between these two types of seismic wave and compare ho	w they transfer
You may	draw a labelled diagram if it helps you with your description.	
		[4]

9

10 Soluble magnesium sulfate is prepared from the reaction between insoluble pieces of magnesium carbonate and an aqueous acid.

equal

crystallisation

(a) Use words from the list to complete the sentences to describe how a pure sample of magnesium sulfate is prepared.

excess

filtrate

[Total: 7]

	melting nitric residue sulfuric
	Each word may be used once, more than once or not at all.
	An amount of magnesium carbonate is added to
	aqueous acid.
	The mixture is filtered.
	The occurs. [4]
(b)	State the effect on the rate of reaction of using magnesium carbonate powder instead or pieces of magnesium carbonate.
	[1]
(c)	Name the gas produced when magnesium carbonate reacts with an aqueous acid.
	[1]
(d)	State the ion responsible for making aqueous solutions acidic.
	[1]

11 Fig. 11.1 shows the human male reproductive system.



Fig. 11.1

Two structures on Fig. 11.1 are labelled **X** and **Y**.

One comparison has been completed for you.

(a)	(i)	State one function of structure X .	
	(ii)	State one function of structure Y .	ניו
(b)	Tab	le 11.1 compares the features of a female and a male gamete.	[.]
	Cor	mplete the comparisons in Table 11.1.	

Table 11.1

feature	female gamete	male gamete
type of nucleus	haploid	haploid
relative size of cell	very large	
numbers produced per month		millions
method of movement	cannot move by itself	

[3]

[Total: 5]

12	Clea	an, d	ry air is a mixture of gases.
	(a)	(i)	Describe the motion of the gas particles in air.
			[1]
		(ii)	State the percentage of oxygen in clean, dry air.
			[1]
	(b)		re two substances found in air that are products of the incomplete combustion of alkanes etrol.
		sub	stance 1
		sub	stance 2[2]
	(c)	Car	s in the future may be powered by hydrogen-oxygen fuel cells.
		Des	cribe one advantage of using hydrogen-oxygen fuel cells instead of petrol engines in s.
			[1]
			[Total: 5]

5129/21/O/N/23

13 Resistors R_1 , R_2 , and R_3 are connected in a circuit as shown in Fig. 13.1.

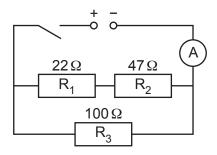


Fig. 13.1

- Resistor R $_1$ has a resistance of 22 Ω . Resistor R $_2$ has a resistance of 47 Ω . Resistor R $_3$ has a resistance of 100 Ω .
- (a) Calculate the combined resistance of the resistors that are connected in series.

combined resistance =		Ω	[1	1]	
-----------------------	--	----------	----	----	--

(b) The current in R_3 is 0.045A.

The current reading on the ammeter is 0.11A.

Calculate the current in R₁.

(c) Fig. 13.2 shows the electrical symbols of three circuit components A, B and C.

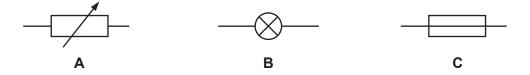


Fig. 13.2

State the name of component **A** and the name of component **B**.

F	1	
F	2	

(ii) Component C is a fuse.

Describe how a fuse protects a circuit from a high current.

		[1]

[Total: 5]

[2]

14	(a)	Draw three lines from the box correct statements about the carl	on the left to three of the boxes on the right to make three bon cycle.
			anaerobic respiration adds carbon dioxide to the atmosphere.
			combustion adds carbon dioxide to the atmosphere.
	- 1	As part of the carbon cycle,	decomposers add carbon dioxide to the atmosphere.
			fossil fuels need carbon dioxide when used as an energy source.
			plants remove more carbon dioxide from the atmosphere by photosynthesis than they add by respiration.
			[3
	(b)	Suggest two reasons why scient	ists insert the human insulin gene into the DNA of bacteria.
			[2
			[Total: 5

15 Table 15.1 shows the electronic configuration of five elements, A, B, C, D and E.

The letters are not the symbols of the elements.

Table 15.1

element	electronic configuration
Α	2
В	2,1
С	2,8,1
D	2,8,7
E	2,8,8

Use the information in Table 15.1 to answer parts (a) to (d).

(a)	Explain why the elements B and C are in the same group of the Periodic Table.	
(b)	State the letter of an element that forms an ion with a charge of -1.	
(a)	Explain why elements A and D are in different periods of the Periodic Table.	[1]
C)	Explain why elements A and b are in different periods of the Periodic Table.	
		[1]
(d)	State the letter of an element that is a noble gas.	
		[1]
	oT]	tal: 4]

16 A Geiger-Muller tube is used to detect background radiation.

(a)	Explain what is meant by 'background radiation'.
	[2]
(b)	State the name of one other method of detecting radiation that can detect alpha-particles.
	[1]
	[Total: 3]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

ts
Ī
Je
e
Ш
of
<u>a</u>
ap
Ë
<u>ပ</u>
Q
<u>ŏ</u>
ē
₫.
he
\vdash

	\parallel	2	e L	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	R	radon						
	=				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Ŗ	bromine 80	53	Н	iodine 127	85	Αţ	astatine -						
	>				8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ро	polonium –	116	_	livermorium -			
	>				7	z	nitrogen 14	15	ட	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	<u>B</u>	bismuth 209						
	≥				9	ပ	carbon 12	14	:S	silicon 28	32	Ge	germanium 73	20	S	tin 119	82	Ъ	lead 207	114	lΗ	flerovium -			
	=				2	М	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	lΤ	thallium 204						
								•			30	Zu	zinc 65	48	B	cadmium 112	80	БĤ	mercury 201	112	ပ်	copemicium -			
											29	Cn	copper 64	47	Ag	silver 108	79	Au	gold 197	111	Rg	roentgenium -			
Group								Z 28	nickel 59	46	Pd	palladium 106	78	₫	platinum 195	110	Ds	darmstadtium -							
Gro														27	ပိ	cobalt 59	45	格	rhodium 103	77	Ľ	iridium 192	109	¥	meitnerium -
		-]	С	hydrogen 1							26	Ьe	iron 56	44	R	ruthenium 101	92	Os	osmium 190	108	H	hassium			
											25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium –			
						pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≯	tungsten 184	106	Sg	seaborgium -			
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	q	niobium 93	73	Б	tantalum 181	105	ОР	dubnium –			
							rela				22	ï	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	꿏	rutherfordium -			
											21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids				
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	56	Ва	barium 137	88	Ra	radium -			
	_				က	:=	lithium 7	=	Na	sodium 23	19	¥	potassium 39	37	ВВ	rubidium 85	55	S	caesium 133	87	Ļ	francium —			

77	lutetium 175	103	۲	lawrencium	
° ×	ytterbium 173	102	% 8	nobelium	
69 E	thulium 169	101	Md	mendelevium	
88 <u>г</u>	erbium 167	100	Fm	fermium	
29 L	holmium 165	66	Es	einsteinium	
99 2	dysprosium 163	86	ರ	californium	
59 T	terbium 159	26	æ	berkelium	
64 ر	gadolinium 157	96	Cm	curium	
63 T	europium 152	92	Am	americium	
62 C	samarium 150	94	Pn	plutonium	
61 D	promethium	93	d d	neptunium	
09 V	neodymium 144	92	\supset	uranium 238	200
₅₉ م	praseodymium	91	Ра	protactinium 231	103
₈₈ م	cerium 140	06	T	thorium 232	202
57	lanthanum 139	68	Ac	actinium	

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).